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Abstract: Air traffic is undergoing big changes both in developed and developing countries. The demand for 
air traffic in the United States is expected to grow to 2 or 3 times the current levels of traffic in the next few 
decades. This paper models demand for air traffic as a network with several thousand nodes. Recently, methods 
have been developed to study the network characteristics of large complex systems in many natural and 
engineering fields. Several networks exhibit the “scale-free” property that as the network grows in size, a small 
number of components have a disproportionate influence on the successful operation of the network. This 
paper describes the network properties of the current air traffic system and uses future scenarios of air traffic 
growth to understand the performance of future air traffic networks. The air traffic network exhibits an 
exponentially truncated scale-free behavior. It is shown that a three-times growth in the overall traffic may 
result in a ten-times impact on the density of traffic in certain parts of the United States. Thus, in addition to 
bottlenecks at major airports, the risk of en route traffic saturation calls for route restructuring and the 
introduction of new operational concepts, such as automation to increase en route capacity. 

 

1. INTRODUCTION 

Air traffic in the United States continues to grow at a steady 
pace except for a dip immediately after the tragic events of 
September 11, 2001. There are different growth scenarios 
associated both with the magnitude and the composition of the 
future air traffic. Terminal Area Forecast (TAF), prepared 
every year by the Federal Aviation Administration (FAA), 
projects the growth of traffic in the United States 
[Anonymous 2005]. Both Boeing and Airbus publish market 
outlooks for air travel annually. Although predicting future 
growth of traffic is difficult, there are two significant trends in 
the growth of air traffic demand: (1) heavily congested major 
airports continue to see an increase in traffic, and (2) the 
emergence of Regional Jets and other smaller aircraft with 
fewer passengers operating directly between non-major 
airports. The interaction between air traffic demand and the 
ability of the system to provide the necessary airport and 
airspace resources can be modelled as a network. The size of 
the resulting network varies on the choice of the nodes of the 
network. It would be useful to understand the properties of 
this network to guide future design and development. Many 
questions such as the growth of delay with increasing traffic 
demand and impact of the en route weather on future air 
traffic require a systematic understanding of the properties of 
the air traffic network. 
Recently, there has been a major advance in analyzing the 
behavior of biological and engineering networks with large 
number of components [Strogatz 2001]. Several networks 
exhibit a scale-free property in the sense that the probabilistic 
distribution of their nodes as a function of connections 
decreases slower than an exponential. These networks are 
characterized by the fact that a small number of components 
have a disproportionate influence on the performance of the 

network. Scale-free networks are tolerant to random failure of 
components; but are vulnerable to selective attack on 
components [Albert 2000, Newman 2003]. 
This paper examines two network representations for the 
current air traffic system. A network defined with the 40 
major airports as nodes and with standard routes as links has a 
characteristic scale: all nodes have 60 or more links and no 
node has more than 460 links. A network defined with current 
aircraft routing structure exhibits an exponentially truncated 
scale-free behavior. Its degree ranges from 2 connections to 
2900 connections, and 225 nodes have more than 250 
connections. Furthermore, those high-degree nodes are 
homogeneously distributed in the airspace. A consequence of 
this scale-free behavior is that the random loss of a single 
node has little impact, but the loss of multiple high-degree 
nodes (such as occurs during major storms in busy airspace) 
can adversely impact the system. Two future scenarios are 
used to predict the growth of air traffic in the United States. It 
is shown that a three-times growth in the overall traffic may 
result in a ten-times impact on the density of traffic in certain 
parts of the United States.  
The paper is organized as follows: Section on Complex 
Network Analysis provides a brief overview and terminology 
of the complex networks useful in the analysis of air traffic. 
This is followed by an application of the complex network 
methodology to the current air traffic system. Section on 
Future Air Traffic Scenarios considers different scenarios for 
the evolution of air traffic in the United States during the next 
25 years and looks for changes in the behavior of the network. 
An analysis of the future air traffic scenarios shows that a 
three-times growth in overall traffic can result in a tenfold 
impact on the density of highly connected nodes in certain 
parts of the United States. Thus, in addition to bottlenecks at 
major airports, the risk of airspace congestion calls for route 



 
 

     

 

restructuring and the introduction of new procedures and 
automation to increase airspace capacity. Concluding remarks 
and possible research in this area is discussed in the last 
Section. 

2. COMPLEX NETWORK ANALYSIS 

Complex systems have many agents or components 
interacting with each other, and their collective behavior is 
not a simple combination of the individual behavior. The 
pattern of interaction between agents can be studied as a 
network of connections between agents. Networks of many 
types are pervasive in modern society and scientists from 
many fields are trying to broaden their understanding of the 
structure of the networks. A network is made up of basic 
components called either vertices or nodes. Each node is 
connected to other nodes in the system. The line connecting 
two nodes is referred to as a link or an edge. An edge is 
directed if it runs only in one direction, and undirected if it 
runs in both directions. Degree is the number of edges 
connected to a node. Figure 1 shows a simple network with 
nodes A, B, C and D and edges connecting them. The degree 
of node A, B, C and D is respectively 3, 2, 2 and 1 in the 
figure.  

 
Figure 1. Nodes and edges in a network 
The structure of the network has a strong influence on the 
functions performed by the network. It is possible to analyze 
networks of small sizes (less than 100) by drawing the picture 
of the network and analyzing its properties. The number of 
nodes in a complex engineering system, such as the 
worldwide web [Broder 2000], can easily be as large as a few 
million nodes. The behavior of random and regular networks 
with large number of components has been studied for a long 
time [Erdos 1960, Newman 2003]. Networks describing real 
systems are neither random nor regular. The ability to model 
real systems and capture the behavior of key variables is 
extremely difficult. Recent developments in complex 
networks examine the statistical properties of large networks 
and help answer questions about the dynamics and stability of 
such networks.  
A major area of interest is the role played by the distribution 
of the degree of nodes in a network. Let 
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distribution for the network can be computed by generating a 
histogram of 
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pk . The degree distribution for large random 
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Figure 2 shows the ccdf for the Poisson distribution and 
Figure 3 shows it on a logarithmic scale. 
It has been observed that the degree distribution for some 
real-world networks, such as the Internet and biological 
networks, are highly skewed with tails several times longer 
than the mean. These real networks have a small number of 
nodes, or hubs, with high degree of connectivity. Hubs play 
an important role in influencing the properties of the network. 
Real networks exhibiting a small number of hubs are referred 
to as “scale-free” networks [Barabasi 2003]. 

 
Figure 2.  Poisson distribution 
The distributions of degree for a number of networks, e.g. 
Internet, World Wide Web, collaboration network of 
mathematicians, etc., show a power law in their tails: 
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ccdf for 
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"=2. Power law distributions appear linear in a 
logarithmic scale (Figure 5). 
The appearance of hubs in scale-free networks is explained in 
terms of two behaviors both in people and real systems- 
growth and preferential attachment. There is a tendency for 
new growth to gravitate towards desirable locations. 
Generally, all the desirable locations already have some 
existing nodes. The preferential attachment mechanism leads 
to the creation of more powerful nodes or hubs. The various 
hubs compete to attract new nodes and absorb them, resulting 
in an increase of the number of links in the initial hubs.  
 
Scale-free networks with power law distributions exhibit two 
important properties: (a) remarkable resistance to random 
failure of nodes and (b) extreme vulnerability to targeted 
attacks. The functionality and performance of the network 
depends on the existence of the edges between pairs of nodes. 
The distance between the remaining vertices gets longer as 
nodes are removed from a network and the removal of a 
certain number nodes may result in a collapse of the entire 
system. 



 
 

     

 

 
Figure 3. Poisson distribution in logarithmic scale 

 
Figure 4. Power law distribution 

 
Figure 5. Power law distribution in logarithmic scale 
The tolerance of networks to failures or removal of nodes 
varies with their level of resilience. The nodes from a network 
could be removed randomly or in a coordinated approach. 
Several studies have shown that scale-free networks are 
generally robust to random removal of nodes. However, they 
are less tolerant to the selective removal of hubs. 
The next section will examine the air traffic in the United 
States to see if it exhibits the properties of a scale-free 
network and draw analogies from the attack vulnerabilities of 
other complex networks. The methodology can also be used 
to understand the properties of the Next Generation Air 
Transportation System as it evolves over the next few decades 
[Pearce 2006]. 

3. CURRENT U.S. AIR TRAFFIC NETWORK 

The National Airspace System (NAS) refers to the collection 
of hardware, software and people, including runways, radars, 
networks, FAA, airlines, etc., involved in air traffic 
management (ATM) in the U.S. It has been pointed from a 
modelling perspective that the NAS should be treated as a 
complex adaptive system [Donohue 2003]. NAS can be 
looked as a network at several different levels. The analysis of 
current traffic uses air traffic data from 2006 and constructs 
two different types of networks for a typical day of operations 
in the NAS. The analysis is based on actual traffic flow for a 
day in July 2006. The traffic flow data is processed using 
Future Air traffic management Concept Evaluation Tool 
(FACET) simulation software [Sridhar 2006] for conducting 
the network flow analysis. 
Current air traffic is modelled in two different ways and the 
characteristics of the resulting air traffic networks are 
described in Table 1. The nodes in the Airport Network (AN) 
correspond to the 40 major airports in the U.S. Today, a set of 
predefined alternative routes is used for flying between city 
pairs. Each node in network AN is connected to another node 
through one or more routes. The Airport and Airspace 
Network (AAN) includes all airports in the U.S. and routes 
connecting these airports. A route between two airports is 
defined by a series of geographical positions or fixes in the 
airspace. Each fix together with the airports represent a node 
in the AAN network. 

Table 1. Different types of ATM networks 

Network Nodes Number of 
Nodes 

Edges 

Airport 
Network (AN) 

40 major 
airports 

40 Routes 
between 40 
major 
airports 

Airport and 
Airspace 
Network 
(AAN) 

All airports 
and fixes 
along routes 
connecting 
all airports 

8170 Routes 
between all 
airports 

 

3.1 Behavior of the degree of nodes in ATM network 

The ccdf for the nodes in network AN is shown in 
Figure 6. The figure shows the probability that an airport in 
the network has more than a certain number of routes 
originating or terminating at the airport. The degree of nodes 
at all airports exceeds 60 and Chicago has the maximum 
number (460) of connections. The distribution of the routes 
between airports does not show scale-free behavior. The 
airport connection distribution in the U.S is similar to the 
distribution of the connections between the network of world 
airports [Amaral 2000]. 

Figure 7 shows the ccdf of the nodes in network AAN. 
The ccdf of the nodes in network AAN shows a rapid decay 
of the percentage of nodes with the degree of the node. 
However, it has 225 nodes with more than 250 links, 
indicative of high volumes of traffic through these nodes. 



 
 

     

 

Figure 8 shows the logarithmic behavior of the ccdf of the 
nodes in network AAN. 

The nodes of network AAN initially follow the power 
law curve similar to several scale-free networks [Newman 
2003]. However, towards the end of the tail, the distribution 
shows a deviation from the power law behavior indicating a 
limit on the number of nodes that have a high number of 
connections. The limit on the growth of the large hub nodes, 
in the distribution of the ATM network, is due to the 
constraints imposed on traffic demand by the location of the 
cities, economic development and government policies. 

The existence of hub and secondary airports 
characterizes current air traffic operations [Bonnefoy 2004]. 
The network analysis provides an additional ability to study 
traffic behavior in the en route airspace.  Figure 9 shows 
geographical distribution of the nodes with degree higher than 
250 in network AAN. These nodes will be referred to as 250G 
nodes. 250G nodes represent approximately 2.7% of the total 
nodes in the network. Table 2 shows the number of 250G 
nodes in different traffic control regions, referred to as 
Centers. The Centers, Chicago (ZAU), Boston (ZBW), 
Atlanta (ZTL), Kansas City (ZKC), Washington, DC (ZDC), 
Indianapolis (ZID), Jacksonville (ZJX), Los Angeles (ZLA), 
Cleveland (ZOB) and New York (ZNY), each have more than 
ten of the 250G nodes. The Centers in the western part of the 
United States have fewer 250G nodes indicative of the lower 
traffic density in these Centers. It is informative to express the 
distribution of the 250G nodes in units of number of nodes 
per 10,000 square nautical miles (10Ksqnm). Using this 
measure of nodal traffic density, ZNY has the highest nodal 
density with six 250G nodes per 10Ksqnm. 

The behavior of the degree of the nodes in an ATM 
network should not be surprising since the ATM network has 
evolved to serve population densities in the U.S. Network 
analysis helps to visualize and quantify the characteristics of 
the network. 

3.2 Resilience of ATM networks  

The tolerance of complex networks to random and targeted 
failures depends on their network structure. As observed 
earlier, a scale-free network is tolerant to random failure, 
since the hubs are few and the chance of a hub being selected 
randomly is low. However, the same network may be prone to 
targeted attacks on a small percentage of vital nodes. In ATM 
networks, weather can be regarded as an agent of attacks on 
the system. 

Convective weather is a major source of uncertainty in 
ATM networks. One effect of severe weather is to make 
airspace unavailable for the flow of air traffic. The removal of 
airspace may result in the failure of hubs and increase the 
average path length in the network. The impact of weather on 
ATM system performance appears as delay [Sridhar 2005]. 
The tolerance of the ATM network to weather depends on the 
geographical distribution of the weather and the coverage of 
nodes with high degree. 

 
 

4. FUTURE AIR TRAFFIC SCENARIOS 

The demand for air transportation is projected to grow in 
proportion to the expansion of global trade. National and 
international projections of traffic growth indicate a tripling of 
passengers by 2025 [Pearce 2006]. 

 
Figure 6. Cumulative distribution function for nodes (40 
major airports) in network AN 

 

Figure 7. Distribution of nodes in AAN with current traffic 

  
Figure 8. Logarithmic behavior of nodes in network AAN 
 
There may be increased traffic due to the growing presence of 
on-demand air taxis and unmanned air vehicles. It is estimated 
that 5000 micro jets may be operational by 2010 and 13500 
by 2022. The TAF provides forecasts for airports in the NAS. 
The forecast for the 35 major airports in the United States 
receive more detailed modeling that takes into account local 
economic conditions and airline costs. TAF is the basis for 
most aviation demand forecasts. The TAF data published in 



 
 

     

 

March 2006 provides traffic growth rates for the period 2005-
2021. In order to achieve 3-times current day  

 

Figure 9. Geographical distribution of 250G nodes in AAN 
under current traffic and severe weather polygons 

traffic (3X) scenarios assumed in future planning, two 
different scenarios for post-2025 traffic growth are used in the 
traffic demand model [Huang 2006]. The compound 
extrapolation approach grows traffic until it reaches 3X by 
assuming the TAF airport growth rates for traffic beyond 
2025. As an alternative, the homogeneous extrapolation 
approach assumes the same growth rates at all airports until 
the traffic level reaches 3X. These two scenarios will be 
referred to as 3X Compound (3XC) and 3X Homogeneous 
(3XH) scenarios in the rest of the paper. The scenarios are 
processed to compute the changes in the network properties of 
future ATM systems. 

 

Figure 10. Logarithmic behavior of nodes in network AAN 
with 3X Compound traffic 

4.1 Behavior of future ATM networks 

The properties of future ATM networks can be derived similar 
to the properties of the current ATM networks. The 
computations can be used to compare the geographical 
distribution of the hubs compared to the distribution today. 
Figures 10 shows the distribution of the nodes in the AAN 
network for the 3XC traffic scenario. The result for the 3XH 
traffic scenario is similar. 
The future ATM networks, under both scenarios, show 
exponentially truncated scale-free behavior similar to the 
current ATM network. The distribution of the hubs will have 
an impact on the growth of delay in future ATM networks 
subjected to severe weather. The vulnerability of the network 
to reduction in capacity caused by certain weather patterns 

will be very significant and disruptive to the operation of the 
system. The impact of the weather on future ATM networks 
will be described subsequently in the paper. 

Table 2. Distribution of 250G nodes by Centers under 
current and future traffic scenarios 

Center Current 3XH 3XC 
ZAB 7 70 78 
ZAU 15 67 70 
ZBW 16 77 87 
ZDC 22 134 143 
ZDV 8 51 68 
ZFW 3 59 68 
ZHU 8 60 72 
ZID 15 71 71 
ZJX 14 71 81 
ZKC 11 58 50 
ZLA 16 102 119 
ZLC 5 29 40 
ZMA 4 44 54 
ZME 10 38 42 
ZMP 6 46 53 
ZNY 14 80 88 
ZOA 10 57 67 
ZOB 13 90 89 
ZSE 5 35 41 
ZTL 15 59 62 
Total 217 1298 1443 

 
The geographical distribution of the 250G nodes under 3XC is 
shown in Figure 11. Table 2 shows the same distribution by 
Centers for current traffic and 3X scenarios. The 3X traffic 
demand creates close to a six-fold increase in the 250G traffic 
nodes compared to current traffic. Earlier, it was noted that 
ZNY has the highest 250G traffic nodal density. The hubs, 
500G, 750G and 1000G, are defined similar to the 250G hub. 
Under the 3X demand, it can be shown that ZNY nodal 
density of 2006 is equaled or exceeded by a majority of the 20 
Centers. Even more alarmingly, the nodal density of 250G 
nodes in ZNY is 6 times the current value, and Cleveland and 
Washington Centers have twice the nodal density of ZNY in 
2006. As seen in Table 3, the 3X traffic also gives rise to 
nodes with even more connections. 

Table 3. Nodes for different traffic scenarios 

Types of nodes Current 3XH 3XC 
250G 225 1312 1468 
500G 72 620 806 
750G 33 304 452 
1000G 22 165 262 

4.2 Impact of Weather on ATM Networks 

Another way to view the growth of traffic is to compare how 
similar weather patterns may affect current traffic and 3X 
traffic. The geographical distribution of the 250G nodes 
shown in Figure 11 is based on traffic during July 2, 2006. 
July 2, 2006 was a calm weather day with a total NAS 
aggregate delay of 11997 minutes [FAA 2004]. The traffic on 



 
 

     

 

July 2, 2006 will be assumed as traffic unaffected by weather 
in this discussion [Sridhar 2005].  

Whenever there is severe weather in the NAS, airspace 
capacity is reduced and traffic is rerouted or held on the 
ground causing delays in the system. Collaborative 
Convective Forecast Product (CCFP) is a model of severe 
weather activity and the areas marked blue in Figure 11 shows 
the CCFP for July 13, 2006. On July 13, 2006 the NAS 
experienced a significant total delay of 219350 minutes with 
ZNY, ZDC and ZTL Centers contributing a delay of 116654, 
49400 and 23822 minutes respectively. Next, as shown in 
Figure 11, the same severe weather is overlaid in blue 
polygons on the geographical distribution of the 250G nodes 
under 3XC demand. Table 4 shows hub nodes affected by the 
weather today and in the future. 

 
Figure 11. Geographical distribution of 250G nodes in 
network AAN under 3XC and severe weather polygons 

Table 4. Nodes affected by severe weather 

Types of Nodes 1X 3XH 3XC 
250G 34 191 207 
500G 9 96 118 
750G 4 49 67 
1000G 3 23 41 

 
A greater number of hubs, between six to ten times, are 
affected by the same weather pattern under future traffic 
scenarios than today. If one considers the non-linear growth 
of delay, in regions such as ZNY, ZDC and ZTL where the 
demand on the airspace is close to capacity, the increased 
density of high traffic nodes in these regions will result in 
much larger delays compared to 2006. 

5. CONCLUDING REMARKS 

Air traffic in the United States can be modeled as a network to 
understand the impact of the predicted growth in the demand 
on the performance of the system. It is demonstrated that the 
air traffic network with current en route flight plan 
intersections as nodes and with the flight plans as links shows 
scale-free properties typical of several large engineering and 
biological networks. A consequence of this property is the 
non-linear growth of traffic in certain regions of the United 
States. A preliminary analysis indicates that a three-times 
growth in the overall traffic may result in a ten-times impact 
on the density of traffic in certain parts of the United States. 
The air traffic system currently experiences significant delay 
during periods of severe weather activity. The impact of 
weather of same severity will be magnified several times, 
especially in the northeastern parts of the United States, 
leading to lower system performance. Research must be 

conducted to determine whether this risk can be mitigated 
through restructuring routes or by introducing new operational 
concepts, such as automation assistance to controllers to 
increase airspace capacity.  The network analysis described in 
the paper can be used to guide the development of various 
traffic flow management concepts to increase the efficiency of 
air traffic systems. 
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